Romanian Agricultural Research

Number 28/2011

ORIGINAL REPORTS

- EFFECT OF VERNALIZATION REQUIREMENTS ON HEADING DATE AND GRAIN YIELD OF NEAR-
 ISOCENIC LINES OF WHEAT (Triticum aestivum L.) - Pihipa Nutznea, Gheorghe Ilea, Nicolae N.
 Sautescu ... 3

- SIGNIFICANT DIFFERENCES IN CROP ALBEDO AMONG ROMANIAN WINTER WHEAT CULTIVARS -
 Gabriela Sicham, Daniel Tudor Coffan, Petru Adrian Cofet ... 11

- ESTIMATION OF GENETIC TRENDS IN YIELD AND AGRONOMIC TRAITS OF RECENT ROMANIAN
 WINTER WHEAT (Triticum aestivum L.) CULTIVARS, USING DIRECT COMPARISONS IN
 MULTILAYER MULTI-LOCATION YIELD TRIALS - Pihipa Nutznea and Nicolae N. Sautescu 17

- VARIATION OF WHEAT GRAIN YIELD DEPENDING ON VARIETY AND SEED SIZE - Goran Todorović,
 Nade Pratić, Nada Pratić .. 25

- GRAIN PROTEIN CONCENTRATION AND ITS STABILITY IN A SET OF WINTER WHEAT CULTIVARS,
 GROWN IN DIVERSE ENVIRONMENTS AND MANAGEMENT PRACTICES - Anamila Neupri 29

- TEST WEIGHT OF SEVERAL WINTER WHEAT GENOTYPES USING DIFFERENT WAYS OF SEED
 PRODUCTION - Nade Pratić, Goran Todorović, Nada Pratić, Dragana Vranićević 37

- INTERRELATIONS BETWEEN HEIGHT OF WINTER WHEAT GENOTYPES AND RESISTANCE TO
 FISSIONAL HEAD BLIGHT (FHB) - Valentina Supric, Mirea Lemnian, George Deleanu, Krassimir
 Djorovic .. 43

- SPIKE PRODUCTIVITY IN RELATION TO YIELD AS A CRITERION FOR PAPYRUS WHEAT BREEDING
 - Petru Cretcu, Ioana Caputea, Zdeněk Slecha, Jan Mysliveček, Jan Mysliveček 49

- DIFFERENTIAL RESPONSE TO SALINITY IN TWO HABAN MAIZE (Zea mays L.)
 CULTIVARS - Roxana Sandu ... 57

- COMPARISON OF DIFFERENT METHODS FOR IDENTIFICATION OF MAIZE POPULATIONS (Zea mays
 L.) AS SOURCES FOR ELITE HYBRID IMPROVEMENT - Noual Dolly, Jason Edwards, Mircea Mihalcea,
 Constantia Markovic .. 65

- THE MODE OF INHERITANCE OF GRAIN YIELD IN TWO SINGLE-CROSS MAIZE (Zea mays L)
 HYBRIDS - Goran Todorović, Tomislav Živanović, Radomir Jeremić, Miroslav Krstić, Radu
 Daruiev, Bogdan Zecelj, Ana Zecelj, Vojin Vukadinović .. 71

- THE EVALUATION OF WATER STRESS IN MAIZE (Zea mays L.) USING SELECTION INDEXES - Silvia
 Horean and Viorica Urechean ... 79

- ESTIMATION OF GENETIC DIVERGENCE IN EUROPEAN COLLECTION OF ZEA SP. SPECIES FOR
 YIELD RELATED TRAITS - Teodor Ciopă, Sonja Maric, Vesna Popović, Marijana Touzi 85

- A NEW MOLECULAR MARKER LINKED TO GENE FOR MONOCOTYLEDON IN SUGAR BEET (Beta
 vulgaris L.) - R. Andri, E. Sarafian, S.A. Sadat Noori, P. Normari, N. Seyyedmohammadi 85

(Continued inside cover)
ROMANIAN AGRICULTURAL RESEARCH

An annual publication of The National Agricultural Research and Development Institute Fundulea, Romania

Publishes original papers presenting new scientific results – theoretical, experimental and technical – on field crops breeding and genetics, physiology, biochemistry, biotechnology, mineral nutrition, plant protection and farming systems.

Abstracted / Indexed:

- Thompson Reuters – ISI Web of Science:
 - Science Citation Index Expanded (also known as SciSearch®)
 - Journal Citation Reports/Science Edition
- CAB Abstract

NUMBER 28, 2011

Editor-in-Chief
Marian VERZEA

Scientific Editor
Nicolae N. SĂULESCU

Editorial Board

Alexandru BUDE, Lucian GHINEA,
Cristian HERA, Gheorghe ITTU, Constantin POPOV,
Gheorghe SIN, Alexandru Viorel VRĂENCEANU

Technical editors: Silvia CARAGANCEV, Angelina PUȘCAS
EFFECT OF CROPPING SYSTEM, PLANTING DENSITY AND SIZE OF POTATO SEED-MINITUBERS ON THEIR YIELDING CAPACITY

Andreea Nistor¹, Gheorghe Câmpeanu², Nicolae Atanasiu², Nicoleta Chiru¹, Sorin Rusu¹, Maria Ianoşi¹

¹National Institute of Research and Development for Potato and Sugar Beet, Bragov, Fundălului Street, no. 2, Bragov County, Romania. E-mail: tican_andreea@yahoo.com
²University of Agronomic Science and Veterinary Medicine, Bucureşti, Măgăriş Bd., no. 59, District I, Romania

ABSTRACT

Our goals were to increase the coefficient of potato propagation by optimizing planting density, using different calibration classes of minitubers in early, mid early and semi-late cultivars (Ostara, Christian, Roclas and Desirée) and planting them in open field and “insect proof” tunnels. All tested cultivars had lower production in the tunnels compared with the culture in the open field (yield differences of 0.74 to 10.29 t ha⁻¹), but tubers were superior in phytosanitary terms, being 100% free of viruses. The 25-35 mm size fraction gave higher production compared with the fraction 15-25 mm, and planting densities of 8 and 6 minitubers per linear meter determined higher yields than the density of 5 minitubers per linear meter, for both cropping systems and all cultivars.

Key words: minituber, “insect proof” tunnels, planting density, planting size, potato cultivars.

INTRODUCTION

Potato is the most widely cultivated food crop after wheat, rice and maize. In the common environment conditions, potato is infected with 25 viruses and 1 viroid (Salazar, 1996). Most severe viruses, which produce disease and strongly affect potato plants, eventually lead to important production losses (Bojman and Ianoşi, 2005). Producing minitubers from healthy in vitro plantlets allows a faster multiplication rate in seed tuber production programs and reduces the number of required field generations (Imma and Mingo-Castel, 2006). These minitubers are the beginning stage of seed potato production. The application of healthy potato tubers can lead to at least 30% yield increase (Zarghami, 2001).

The main problem in the program of conventional seed potato production is the low rate of multiplication in field conditions and the susceptibility of potato to diseases, which can be transmitted through potato tubers.

With each multiplication of potato in the field, the risk of infection with viruses, bacteria or other pathogens increases (Ranalli et al., 1994).

Healthy potato seed can be improved by reducing the number of multiplications in the field required for seed production. This technique requires the use of propagation of original material, in large quantities, in “insect proof” tunnels.

Increasing the density of minitubers over certain limits had negative influence on the number of tubers from fraction 30-50 mm and on their quality (Bărbac, 2004).

The size of minitubers may range from 5 to 25 mm, although in current systems larger mini-tubers also have become common. This size range coincides with a weight range of 0.1-10 g or more (Struik, 2007).

Planting density variations could influence above and below ground biomass accumulation and, subsequently, tuber number and weight. Karafyllidis et al. (1997) determined that more minitubers and yield per area are expected in high planting densities in contrast with low densities.

Another study showed that increasing planting densities reduces the proportion of...
large minitubers in favor of smaller minitubers (Georgakis et al., 1997).

In this study, minitubers were planted at high altitudes, as these represent natural barriers created on natural conditions for isolating crops and therefore reduce virotic disease propagation (Bozgan, 2003).

MATERIAL AND METHODS

In 2009, a study on the production of potato obtained from minitubers (both in open field and in "insect proof" tunnels) was done at Lazarea, District Harghita.

In the experimental field at Lazarea, a factorial trial was placed, using a split-plot design of the type 2 x 4 x 3 x 2, with a total of 48 treatments in three replications.

The experimental factors were:
- factor a – cropping system, with two graduations:
 - a₁ – in open field (Figure 1);
 - a₂ – in "insect proof" tunnels (Figure 2).
- factor b – cultivars with 4 graduations:
 - b₁ – Ostara;
 - b₂ – Christian;
 - b₃ – Roclas;
 - b₄ – Desirée.
- factor c – planting density, with three graduations:
 - c₁ – 114285 minitubers ha⁻¹ (70 x 12.5) = 11.4 pl m⁻² (8 minitubers/linear meter);
 - c₂ – 86058 minitubers ha⁻¹ (70 x 16.6) = 8.6 pl m⁻² (6 minitubers/linear meter);
 - c₃ – 71428 minitubers ha⁻¹ (70 x 20.0) = 7.1 pl m⁻² (5 minitubers/linear meter).
- factor d – minituber size used in planting, with two graduations:
 - d₁ – <25 mm;
 - d₂ – 25 - 45 mm.

The climate on closed areas is wet and cool, the largest amount of precipitation falling in June, July, August, with a high frequency of rainy days in June and July.

The average annual temperature is between 5.6 and 7.5-7.8 degrees Celsius.

RESULTS AND DISCUSSION

ANOVA shows that, when tested against the pooled variance of high order interactions, all 4 studied factors had significant effects on tuber yield, but among the two factors interactions only the interaction between cropping systems and cultivars was significant (Table 1).

Cultivars Roclas and Christian significantly overyielded the control, the cultivar Ostara in both cropping systems.

The yield increase over Ostara ranged from 2.80 t ha⁻¹ for Roclas, in tunnels and 10.23 t ha⁻¹ for the same cultivar, in open field (Table 2).

Cultivars Roclas and Christian significantly overyielded the control, the cultivar Ostara in both cropping systems.

The yield increase over Ostara ranged from 2.80 t ha⁻¹ for Roclas, in tunnels and 10.23 t ha⁻¹ for the same cultivar, in open field (Table 2).
The cultivar Desirée cultivar gave a significant yield increase of 2.37 t ha\(^{-1}\) over Ostara in "insect-proof" tunnel, but was not significantly different from the control in open field.

The results confirm the productivity of the mid early cultivars Christian and Roclas, both in protected space "insect-proof", and in open field.

The yield difference between open field and insect proof tunnels ranged from 0.74 in Ostara to 10.29 t ha\(^{-1}\) in Roclas. Higher yields were obtained for all cultivars tested in the open field compared with the tunnels, with very significant positive differences ranging between 6.99 and 10.29 t ha\(^{-1}\), for Christian and Roclas cultivars and a positive significant difference of 2.86 t ha\(^{-1}\) for cultivar Ostara, while the cultivar Desirée behaved similarly in both cropping systems.

Table 2. Combined influence of cultivar and cropping system on tuber yield (t ha\(^{-1}\))

(Desirée, Harghita County, 2009)

<table>
<thead>
<tr>
<th>Crop system / Cultivar</th>
<th>Tunnels, "insect-proof"</th>
<th>Open field, (a_2)</th>
<th>Differences (t ha(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yield (t ha(^{-1}))</td>
<td>Dif. (t ha(^{-1}))</td>
<td>Signif.</td>
</tr>
<tr>
<td>Ostara, (b_1)</td>
<td>20.98</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Christian, (b_2)</td>
<td>24.76</td>
<td>+3.78</td>
<td>***</td>
</tr>
<tr>
<td>Roclas, (b_3)</td>
<td>23.78</td>
<td>+2.80</td>
<td>***</td>
</tr>
<tr>
<td>Desiree, (b_4)</td>
<td>23.35</td>
<td>+2.37</td>
<td>**</td>
</tr>
</tbody>
</table>

DL 5% = 0.93 (t ha\(^{-1}\))

Despite the fact that yields in the tunnels were lower than those obtained in open field, tubers obtained in tunnels are qualitatively superior, being 100% free of virus; implementation of the tunnel "insect-proof" system should be regarded as an effective solution to obtaining quality pre-basic plant material and an economically efficient solution, competitive nationally and internationally (Table 3).

For cultivars Christian and Desirée, the highest yield was obtained with the density of 8 tubers per linear meter and size fraction 25-35 mm (33.97 t ha\(^{-1}\) in open field and 31.79 t ha\(^{-1}\) in the tunnels for Christian and 28.41 and 30.68 t ha\(^{-1}\) respectively for Desirée).

In Roclas highest yield in open field was also obtained with the density of 8 tubers per linear meter and size fraction 25-35 mm, while in tunnels highest yield was obtained with the density of 6 tubers of the same size per linear meter.

The 25-35 mm size fraction gave higher yields, as compared with the fraction 15-25 mm, and planting densities of 8 and 6 meter linear minitubers determined higher yields than the density of 5 minitubers linear meter for both cropping systems and all cultivars.
Table 3. Combined influence of cropping system, planting density, size fraction and variety on production (t ha\(^{-1}\)) of tubers obtained (Lăzăroaia, Harghita County, 2009)

<table>
<thead>
<tr>
<th>Culture technology</th>
<th>Size fraction (mm)</th>
<th>Density (tubers/linear meter)</th>
<th>Production (t ha(^{-1})) / Cultivars</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ostara</td>
</tr>
<tr>
<td>Open fields</td>
<td>15 - 25</td>
<td>8 tubers/m</td>
<td>23.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 tubers/m</td>
<td>22.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 tubers/m</td>
<td>17.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tunnels "insect proof"</td>
<td>25 - 35</td>
<td>8 tubers/m</td>
<td>30.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 tubers/m</td>
<td>26.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 tubers/m</td>
<td>21.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 - 25</td>
<td>8 tubers/m</td>
<td>21.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 tubers/m</td>
<td>18.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 tubers/m</td>
<td>17.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 - 35</td>
<td>8 tubers/m</td>
<td>24.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 tubers/m</td>
<td>22.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 tubers/m</td>
<td>21.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LSD 5% = 2.72 t ha\(^{-1}\) LSD 1% = 4.11 t ha\(^{-1}\) LSD 0.1% = 5.34 t ha\(^{-1}\) n.s. = not significant

CONCLUSIONS

Cropping systems, cultivars, planting densities and tuber size significantly influenced the potato tuber yield, but only the interaction between cropping systems and cultivars was significant.

Cultivars Roclas and Christian yielded significantly more than the control cultivar Ostara both in open field and in tunnels.

Despite lower yields, implementation of the tunnel "insect-proof" should be regarded as an effective solution to keeping quality of plant material and is an economically efficient solution.

The 25-35 mm size fraction gave higher yield than the fraction 15-25 mm, and planting densities of 8 and 6 meter linear minitubers determined higher yields than the density of 5 minitubers linear meter for both cropping systems and all cultivars.

REFERENCES

Săcădu, M., 2004. Criterii privind repetarea coeficientului de inmulţire a eurofăruitului de inmulţire prin biorivire de minitubere, în condiţiile...
ecologie de la NICQSB Brânov (Research on increasing the coefficient of potato propagation by using minitubers in ecological conditions from NIRDPSB Brânov). Doctorate thesis.

